A general method for solving dynamically accelerating multiple co-linear cracks
نویسندگان
چکیده
We present a general method for analyzing dynamically accelerating multiple co-linear cracks that can be applied to the contexts of plane strain or antiplane shear in an elastic material. The difficulty in solving such problems lies in the fact that the space-time regions containing known data evolve as the crack propagates in an a priori unknown manner. Using an analog to a Dirichlet-to-Neumann map, we can find complete knowledge of the stress and displacement along the fracture plane, facilitating the application of fracture criteria that require these values away from the crack tip. The method is demonstrated for a semi-infinite or finite mode III crack as well as for a pair of cracks in elastic material, using a stress intensity factor fracture criterion for simplicity.
منابع مشابه
Global conjugate gradient method for solving large general Sylvester matrix equation
In this paper, an iterative method is proposed for solving large general Sylvester matrix equation $AXB+CXD = E$, where $A in R^{ntimes n}$ , $C in R^{ntimes n}$ , $B in R^{stimes s}$ and $D in R^{stimes s}$ are given matrices and $X in R^{stimes s}$ is the unknown matrix. We present a global conjugate gradient (GL-CG) algo- rithm for solving linear system of equations with multiple right-han...
متن کاملA NEW MODIFIED HOMOTOPY PERTURBATION METHOD FOR SOLVING LINEAR SECOND-ORDER FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS
In this paper, we tried to accelerate the rate of convergence in solving second-order Fredholm type Integro-differential equations using a new method which is based on Improved homotopy perturbation method (IHPM) and applying accelerating parameters. This method is very simple and the result is obtained very fast.
متن کاملABS-Type Methods for Solving $m$ Linear Equations in $frac{m}{k}$ Steps for $k=1,2,cdots,m$
The ABS methods, introduced by Abaffy, Broyden and Spedicato, aredirect iteration methods for solving a linear system where the$i$-th iteration satisfies the first $i$ equations, therefore a system of $m$ equations is solved in at most $m$ steps. In thispaper, we introduce a class of ABS-type methods for solving a full rowrank linear equations, w...
متن کاملReconsidering the Boundary Conditions for a Dynamic, Transient Mode I Crack Problem
A careful examination of a dynamic mode I crack problem leads to the conclusion that the commonly used boundary conditions do not always hold in the case of an applied crack face loading, so that a modification is required to satisfy the equations. In particular, a transient compressive stress wave travels along the crack faces, moving outward from the loading region on the crack face. This doe...
متن کاملA new idea for exact solving of the complex interval linear systems
In this paper, the aim is to find a complex interval vector [Z] such that satisfies the complex interval linear system C[Z]=[W]. For this, we present a new method by restricting the general solution set via applying some parameters. The numerical examples are given to show ability and reliability of the proposed method.
متن کامل